QFT Spring2025

HW2

Q1 Fermi Golden Rule

Consider a quantum system with an unperturbed Hamiltonian H_0 and a weak interaction that is **adiabatically switched on**:

$$H = H_0 + Ve^{\epsilon t}$$
, with $\epsilon \to 0^+$.

Initially, the system is in the eigenstate $|i\rangle$ of H_0 with energy E_i .

• Compute the survival amplitude

$$c_i(t) = \langle i|U(t,0)|i\rangle$$

up to second order in V, and show that it diverges as $\epsilon \to 0$.

• Show that the construction

$$\frac{d}{dt}\ln c_i(t)$$

is **finite**, demonstrating that the divergence cancels.

• This motivates the definition of the **renormalized self-energy**

$$\Sigma_i = \frac{i}{t} \ln c_i(t).$$

Show that the energy shift and decay rate can then be identified as

$$\Delta E_i = \operatorname{Re} \Sigma_i, \quad \Gamma_i = -2 \operatorname{Im} \Sigma_i.$$

• Derive the explicit expressions for ΔE_i and Γ_i :

$$\Delta E_i = V_{ii} + \sum_{m \neq i} \mathcal{P} \frac{|V_{mi}|^2}{E_i - E_m},$$

$$\Gamma_i = \frac{2\pi}{\hbar} \sum_{m \neq i} |V_{mi}|^2 \delta(E_m - E_i).$$

• To leading order in Σ_i show that

$$|c_i(t)|^2 + \Gamma_i t = 1.$$

Q2 Schwinger proper time regularization.

• Show that

$$\int_{-\infty}^{\infty} dx \, \frac{1}{x^2 + a^2} = (2\pi) \, \frac{1}{2a}.$$

• Make sense of the following identities:

$$\mathcal{A}^{-1} = \int_0^\infty dt \, e^{-t\mathcal{A}}$$
$$\ln \mathcal{A} = -\int_0^\infty dt \, \frac{1}{t} \left(e^{-t\mathcal{A}} - e^{-t\mathcal{I}} \right).$$

• With $A \to p_4^2 + \omega^2$, show (again!) that

$$\int_{-\infty}^{\infty} \frac{dp_4}{2\pi} \, \frac{1}{p_4^2 + \omega^2} = \frac{1}{2\sqrt{\omega^2}}.$$

Q3 Self-energy (part I).

• Explain why

$$\operatorname{Im} (\ln(-1 \pm i\delta)) \to \pm \pi$$

where δ is a small (positive) number. Select any numerical method and verify these results.

• A QFT computation of the self energy Σ_R of a resonance (decaying to two daughters of equal mass m) gives

$$\Sigma_R(s) = 2 \times \frac{g^2}{16\pi^2} \int_0^1 dx \ln\left(m^2 - x(1-x)s - i\delta\right).$$

(The factor of 2 is the symmetry factor for identical particles.) Show that the self energy develops an imaginary part when the COM energy is above the threshold:

$$\operatorname{Im}\Sigma_R(s) = -2 \times \frac{1}{2} g^2 \phi_2(s) \theta(\sqrt{s} - 2m)$$

where $\phi_2(s)$ is the 2-body phase space. (HW01 Q4).

Q4 Recursive formula for N-body phase spaces.

The N-body Lorentz Invariant phase space (LISP) is defined as

$$\begin{split} \phi_N(s=P^2) = \int \frac{d^3p_1}{(2\pi)^3} \frac{1}{2E_1} \frac{d^3p_2}{(2\pi)^3} \frac{1}{2E_2} \cdots \frac{d^3p_N}{(2\pi)^3} \frac{1}{2E_N} \times \\ (2\pi)^4 \, \delta^4(P - \sum_i p_i). \end{split}$$

Note that $E_j = \sqrt{p_j^2 + m_j^2}$.

• Show that the 3-body phase space satisfies the recursion formula

$$\phi_3(s,m_1^2,m_2^2,m_3^2) = \int_{s'}^{s'_+} \frac{ds'}{2\pi} \, \phi_2(s,s',m_3^2) \, \, \phi_2(s',m_1^2,m_2^2).$$

Work out the limits: s'_{\pm} .

Recall the 2-body phase space $\phi_2(s, m_1^2, m_2^2)$ is given by

$$\phi_2(s, m_1^2, m_2^2) = \frac{q(s)}{4\pi\sqrt{s}}$$

$$q(s) = \frac{1}{2}\sqrt{s}\sqrt{1 - \frac{(m_1 + m_2)^2}{s}}\sqrt{1 - \frac{(m_1 - m_2)^2}{s}}.$$

• Derive (again) the result for the massless case:

$$\phi_3(s) = \frac{s}{256\pi^3}.$$

Q5 Fourier transform.

a) Show that

$$G(\vec{x}', \vec{x}) = \langle \vec{x}' | \frac{1}{E - \frac{-\nabla^2}{2m_R} \pm i\delta} | \vec{x} \rangle$$

$$= -2m_R \int \frac{d^3k}{(2\pi)^3} \frac{1}{k^2 - q^2 \mp i\delta} e^{i\vec{k} \cdot (\vec{x} - \vec{x}')}$$

$$= -2m_R \frac{1}{4\pi R} e^{\pm iqR}.$$

where $R = |\vec{x} - \vec{x}'|$ and $E = \frac{q^2}{2m_B}$.

b) Show that $\frac{e^{-mr}}{r}$ and $\frac{4\pi}{k^2+m^2}$ is a pair of (3D) Fourier transform.